A New Model for Asymmetric Spindle Positioning in Mouse Oocytes

نویسندگان

  • Melina Schuh
  • Jan Ellenberg
چکیده

An oocyte matures into an egg by extruding half of the chromosomes in a small polar body. This extremely asymmetric division enables the oocyte to retain sufficient storage material for the development of the embryo after fertilization. To divide asymmetrically, mammalian oocytes relocate the spindle from their center to the cortex. In all mammalian species analyzed so far, including human, mouse, cow, pig, and hamster, spindle relocation depends on filamentous actin (F-actin). However, even though spindle relocation is essential for fertility, the involved F-actin structures and the mechanism by which they relocate the spindle are unknown. Here we show in live mouse oocytes that spindle relocation requires a continuously reorganizing cytoplasmic actin network nucleated by Formin-2 (Fmn2). We found that the spindle poles were enriched in activated myosin and pulled on this network. Inhibition of myosin activation by myosin light chain kinase (MLCK) stopped pulling and spindle relocation, indicating that myosin pulling creates the force that drives spindle movement. Based on these results, we propose the first mechanistic model for asymmetric spindle positioning in mammalian oocytes and validate five of its key predictions experimentally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin-based spindle positioning: new insights from female gametes.

Asymmetric divisions are essential in metazoan development, where they promote the emergence of cell lineages. The mitotic spindle has astral microtubules that contact the cortex, which act as a sensor of cell geometry and as an integrator to orient cell division. Recent advances in live imaging revealed novel pools and roles of F-actin in somatic cells and in oocytes. In somatic cells, cytopla...

متن کامل

Spindle Positioning in Mouse Oocytes Relies on a Dynamic Meshwork of Actin Filaments

Female meiosis in higher organisms consists of highly asymmetric divisions, which retain most maternal stores in the oocyte for embryo development. Asymmetric partitioning of the cytoplasm results from the spindle's "off-center" positioning, which, in mouse oocytes, depends mainly on actin filaments [1, 2]. This is a unique situation compared to most systems, in which spindle positioning requir...

متن کامل

Spire-Type Actin Nucleators Cooperate with Formin-2 to Drive Asymmetric Oocyte Division

Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle...

متن کامل

Asymmetric division in mouse oocytes: with or without Mos

In both vertebrates and invertebrates, meiotic divisions in oocytes are typically asymmetric, resulting in the formation of a large oocyte and small polar bodies. The size difference between the daughter cells is usually a consequence of asymmetric positioning of the spindle before cytokinesis. Spindle movements are often related to interactions between the cell cortex and the spindle asters [1...

متن کامل

The Influence of Meiotic Spindle Configuration by Cysteamine during in vitro Maturation of Mouse Oocytes

Background: The aim of this study was to assess effects of cysteamine as an anti-oxidant on rate of in vitro maturation of oocyte and determination of its effects on spindle size and shape. Methods: Pre-mature mice were primed with pregnant mare stimulating gonadotrophin (PMSG) and germinal vesicle (GV) stage oocytes were obtained 48 h after. The oocytes were cultured in tissue culture medium (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008